MAGLUMI IgG (CLIA)

130208006M

Shenzhen New Industries
Biomedical Engineering Co., Ltd

4F,Wearnes Tech Bldg, Science & Industry Park, Nanshan,Shenzhen,518057CHINA

Tel. + 86-755-86028224 Fax.+ 86-755-26654850 EC REP

Lotus Global Co., Ltd 15 Alexandra Road London

NW8 0DP UK

Tel. + 44-20-75868010 Fax + 44-20-79006187

FOR PROFESSIONAL USE ONLY

Store at 2...8 °C

COMPLETELY READ THE INSTRUCTIONS BEFORE PROCEEDING

SYMBOLS EXPLANATIONS

Authorized Representative in Europe

Manufacturer

Attention. See Instructions For Use

Contents of kit

In vitro diagnostic medical device (In vitro diagnostic use)

Lot number

Catalogue Code

Expiry date (Use by...)

Temperature limitation (store at 2...8 °C)

Number of tests

Keep away from sunlight

Keep upright

INTENDED USE

The kit has been designed for the quantitative determination of Immunoglobulin G (IgG) in human urine.

The method can be used for samples over the range of 0-80µg/ml. The test has to be performed on the MAGLUMI chemiluminescence immunoassay (CLIA) fully auto analyzer (Including MAGLUMI 1000, MAGLUMI 2000, MAGLUMI 2000 Plus and new developed models).

SUMMARY AND EXPLANATION OF THE TEST

IgG is the major antibody containing protein fraction of blood. With significant decreases in IgG level, on either a congenital or acquired basis, there is an increased susceptibility to infectious processes ordinarily dealt with by humoral antibody (ie, bacterial infection). Thus, patients with repeated infection should have their immunoglobulins, and specifically IgG, measured. Therapy with exogenous gamma globulins may be efficacious in such patients. Conversely, IgG levels will be increased in immunocompetent individuals responding to a wide variety of infections or inflammatory insults (indeed, this represents the basis of the serologic diagnosis of infectious diseases). IgG specific antibody can now be demonstrated for numerous organisms, and when coupled with IgM specific antibody, can give an accurate diagnosis of acute or chronic infection. Today, a major cause for a polyclonal increase in IgG is the acquired immunodeficiency syndrome. Monoclonal IgG can be demonstrated in many cases of multiple myeloma. 3 g/dL of monoclonal IgG is a major diagnostic criterion for myeloma. Oligoclonal IgG can be seen in multiple sclerosis and some chronic hepatitides.

A monoclonal gammopathy may be present when the total IgG value is in the normal range. While many of these patients do not have multiple myeloma, evaluation of these patients for evaluation of the gammopathy and the presence of Bence Jones protein in urine is important.

PRINCIPLE OF THE TEST

Competitive immunoluminometric assay:

Use an anti-IgG polyclonal antibody to label ABEI, and use purified IgG antigen to label FITC. Sample, Calibrator, or Control, with ABEI Label, FITC Label and magnetic microbeads coated with anti-FITC are mixed thoroughly and incubated at 37° C, forming antibody-antigen complexes; after sediment in a magnetic field, decant the supernatant, then cycle washing it for 1 time. Subsequently, the starter reagents are added and a flash chemiluminescent reaction is initiated. The light signal is measured by a photomultiplier as RLU within 3 seconds and is proportional to the concentration of IgG present in controls or samples.

KIT COMPONENTS

Material Supplies

Reagent Integral for 100 determinations		
Nano magnetic microbeads: TRIS buffer, 1.2%(W/V), 0.2%NaN3, coated with sheep anti-FITC polyclonal antibody.	2.5ml	
Calibrator Low: bovine serum, 0.2%NaN ₃ . 2.5ml		
Calibrator High: bovine serum, 0.2%NaN₃ 2.5ml		
FITC Label: purified IgG antigen labeled FITC, contains BSA, 0.2%NaN3.		
ABEI Label: anti-IgG monoclonal antibody labeled ABEI, contains BSA, 0.2%NaN3. 6.5ml		
All reagents are provided ready-to-use.		

029120510-v1.0-EN 1/4

Reagent Vials in kit box		
Internal Quality Control: containing BSA, 0.2%NaN ₃ . (target value refer to Quality Control Information date sheet)		

Accessories Required But Not Provided

•	
MAGLUMI Reaction Module	REF: 630003
MAGLUMI Starter 1+2	REF: 130299004M
MAGLUMI Wash Concentrate	REF: 130299005M
MAGLUMI Light Check	REF: 130299006M

Preparation of the Reagent Integral

Before the sealing is removed, gentle and careful horizontal shaking of the Reagent Integral is essential (avoid foam formation!) Remove the sealing and turn the small wheel of the magnetic microbeads compartment to and fro, until the colour of the suspension has changed into brown. Place the Integral into the reagent area and let it stand there for 30 min. During this time, the magnetic microbeads are automatically agitated and completely resuspended.

Do not interchange integral component from different reagents or lots!

Storage and Stability

- Sealed: Stored at 2-8
- °C until the expiry date.
- Opened: Stable for 4 weeks. To ensure the best kit performance, it is recommended to place opened kits in the refrigerator if it's not going to be used on board during the next 12 hours.

Keep away from direct sunlight.

CALIBRATION AND TRACEABILITY

1)Traceability

To perform an accurate calibration, we have provided the test calibrators standardized against the WHO International Standard Immunoglobulins G, A and M, Human Serum NIBSC code: 67/086

2) 2-Point Recalibration

Via the measurement of calibrators, the predefined master curve is adjusted (recalibrated) to a new, instrument-specific measurement level with each calibration.

3) Frequency of Recalibration

- After each exchange of lot (Reagent Integral or Starter Reagents).
- Every week and/or each time a new Integral is used (recommendation).
- After each servicing of the MAGLUMI Fully Auto analyzer.
- If controls are beyond the expected range.

SPECIMEN COLLECTION AND PREPARATION

Sample material: urine

Collect samples using standard procedures.

Store at 2-8

below - 20 °C

Avoid repeated freezing and thawing cycles, stored samples should be thoroughly mixed prior to use (Vortex mixer).

Specimen Conditions

Use caution when handling patient specimens to prevent cross 029120510-v1.0-EN

- contamination. Use of disposable pipettes or pipette tips is recommended.
- Inspect all samples for bubbles. Remove bubbles with an applicator stick prior to analysis. Use a new applicator stick for each sample to prevent cross contamination.

Preparation for Analysis

- Specimens must be mixed thoroughly after thawing by low speed vortexing or by gently inverting. Multiple freeze-thaw cycles of specimens should be avoided.
- All samples (patient specimens or controls) should be tested within 3 hours of being placed on board the MAGLUMI System. Refer to the SNIBE service for a more detailed discussion of onboard sample storage constraints.

Storage

 Specimens can be stored up to 30 days frozen at -20°C or colder

WARNING AND PRECAUTIONS FOR USERS

- For use in IN-VITRO diagnostic procedures only.
- Package insert instructions must be carefully followed.
 Reliability of assay results cannot be guaranteed if there are any deviations from the instructions in this package insert.

Safety Precautions

CAUTION: This product requires the handling of human specimens.

- The calibrators in this kit are prepared from bovine serum products. However, because no test method can offer complete assurance that HIV, Hepatitis B Virus or other infectious agents are absent; these reagents should be considered a potential biohazard and handled with the same precautions as applied to any serum or plasma specimen.
- All samples, biological reagents and materials used in the assay must be considered potentially able to transmit infectious agents. They should therefore be disposed of in accordance with the prevailing regulations and guidelines of the agencies holding jurisdiction over the laboratory, and the regulations of each country. Disposable materials must be incinerated; liquid waste must be decontaminated with sodium hypochlorite at a final concentration of 5% for at least half an hour. Any materials to be reused must be autoclaved using an overkill approach(USP 24,2000, p.2143). A minimum of one hour at 121 considered adequate, though the users must check the effectiveness of their decontamination cycle by initially validating it and routinely using biological indicators.
- It is recommended that all human sourced materials be considered potentially infectious and handled in accordance with the OSHA Standard on Bloodborne Pathogens13.
 Biosafety Level 214 or other appropriate biosafety practices should be used for materials that contain or are suspected of containing infectious agents.
- This product contains Sodium Azide; This material and its container must be disposed of in a safe way.
- Safety data sheets are available on request.

Handling Precautions

- Do not use reagent kits beyond the expiration date.
- °C: 24 Do not mix reagents from different reagent kits.
 - Prior to loading the Reagent Kit on the system for the first time, the microbeads requires mixing to re-suspend microbeads that have settled during shipment.
 - For microbeads mixing instructions, refer to the KIT COMPONENTS, Preparation of the Reagent Integral section of this package insert.

°C is usually

- To avoid contamination, wear clean gloves when operating with a reagent kit and sample.
- Over time, residual liquids may dry on the kit surface, please pay attention the silicon film still exists on the surface of the kit.
- For a detailed discussion of handling precautions during system operation, refer to the SNIBE service information.

TEST PROCEDURE

To ensure proper test performance, strictly adhere to the operating instructions of the MAGLUMI Fully Auto analyzer. Each test parameter is identified via a RFID tag on the Reagent Integral. For further information please refer to the MAGLUMI Chemiluminescence Analyzer Operating Instructions.

	, , ,
20µl	Sample, calibrator or controls
+40µl	ABEI Label
+40µl	FITC Label
+20µl	Nano magnetic microbeads
15 min	Incubation
400µl	Cycle washing
3 s	Measurement

DILUTION

Sample dilution by analyzer is not available in this reagent kit Samples with concentrations above the measuring range can be diluted manually. After manual dilution, multiply the result by the dilution factor.

Please choose applicable diluents or ask SNIBE for advice before manual dilution must be processed.

QUALITY CONTROL

- · Observe quality control guidelines for medical laboratories
- Use suitable controls for in-house quality control. Controls should be run at least once every 24 hours when the test is in use, once per reagent kit and after every calibration. The control intervals should be adapted to each laboratory's individual requirements. Values obtained should fall within the defined ranges. Each laboratory should establish guidelines for corrective measures to be taken if values fall outside the range.

LIMITATIONS OF THE PROCEDURE

1) Limitations

Patients with malignancies may exhibit IgG values within the normal range. IgG concentrations may be elevated in case of liver cirrhosis, hepatitis or tyrosinaemia. Thus, IgG determination is more suitable for therapeutic monitoring and follow-up as well as for a comparison with histological results. IgG serum levels may only be interpreted in context with the clinical picture and other diagnostic procedures. The IgG assay should not be used as the only criterion for cancer screening.

2) Interfering Substances

No interference with test results is seen by concentrations of bilirubin<0.06mg/ml, haemoglobin<16mg/dl or triglycerides<12.5mg/ml.

3) HAMA

Patient samples containing human anti-mouse antibodies (HAMA) may give falsely elevated or decreased values. Although HAMA-neutralizing agents are added, extremely high HAMA serum concentrations may occasionally influence results.

RESULTS

1) Calculation of Results

 The analyzer automatically calculates the IgG concentration in each sample by means of a calibration curve which is generated by a 2-point calibration master curve procedure.

The results are expressed in μ g/ml. For further information 029120510-v1.0-EN

please refer to the MAGLUMI Chemiluminescence Analyzer Operating Instructions.

2) Interpretation of Results

- Reference values: Urine< 6 µg/ml.
- Results may differ between laboratories due to variations in population and test method. If necessary, each laboratory should establish its own reference range.

PERFORMANCE CHARACTERISTICS

1) Precision

Intra-assay coefficient of variation was evaluated on 3 different levels of control serum repeatedly measured 20 times in the same run, calculating the coefficient of variation.

Intra-assay precision			
Control	Mean(μg/ml)	SD(μg/ml)	CV%
Level 1	3.52	0.44	7.62%
Level 2	9.54	0.73	4.11%
Level 3	44.23	1.24	2.80%

Inter-assay coefficient of variation was evaluated on three batches of kit. Repeatedly measured 3 different levels of control serum 21 times, calculating the coefficient of variation.

Inter-assay precision			
Control	Mean(μg/ml)	SD(µg/ml)	CV%
Level 1	18.06	1.24	6.85%
Level 2	150.51	9.21	6.12%
Level 3	601.74	38.09	6.33%

2) Analytical Sensitivity

The sensitivity is defined as the concentration of IgG equivalent to the mean RLU of 20 replicates of the zero standard plus two standard deviations corresponding to the concentration from the standard curve. The sensitivity is typically less than $0.3 \, \mu g/ml$.

3) Specificity

The specificity of the IgG assay system was assessed by measuring the apparent response of the assay to various potentially cross reactive analytes.

Compound	Concentration	Cross reactivity
IgE	320 IU/ml	0.8%
IgA	40 μg/ml	0.7%
IgM	40 µg/ml	0.5%

4) Recovery

Consider calibrator high of known concentration as a sample, dilute it by 1:2 ratio with diluents, and measure its diluted concentration for 10 times. Then calculate the recovery of measured concentration and expected concentration. The recovery should be within 90% -110%.

Expected	Mean Measuring	Recovery
21.21 μg/ml	22.11 μg/ml	104%

5) Linearity

Use IgG calibrator to prepare the six point standard curve, measuring all points' RLU except point A, and then do four-parameter linear fitting in double logarithm coordinate, the absolute linear correlation coefficient(r) should be bigger than 0.9800.

Calibrator	Concentration	Absolute linear
Point	μg/ml	correlation coefficient (r)
А	0.0	
В	1.0	r=0.9900
С	4.0	
D	10.0	
E	30.0	
F	80.0	

6) Method comparison

A comparison of MAGLUMI IgG (y) with a commercially available

IgG test (x) using clinical samples gave the following correlations ($\mu q/mI$):

Linear regression y = 1.17x-8.1 r = 0.969Sy.x =13.4

Number of samples measured: 190

The sample concentrations were between 1.1 and 72µg/ml.

REFERENCES

- 1.Anti-Helicobacter pylori immunoglobulin G (IgG) and IgA antibody responses and the value of clinical presentations in diagnosis of H. Pylori infection in patients with precancerous lesions World Journal of Gastroenterology
- Detection of H pylori infection by ELISA and Western blot techniques and evaluation of anti CagA seropositivity in adult Turkish dyspeptic patients World Journal of Gastroenterology.
- Junqueira, Luiz C.; Jose Carneiro (2003). Basic Histology. McGraw-Hill. ISBN 0-8385-0590-2.
- 4.Mallery DL, McEwan WA, Bidgood SR, Towers GJ, Johnson CM, James LC (2010). "Antibodies mediate intracellular immunity through tripartite motif-containing 21 (TRIM21)". Proc. Natl. Acad. Sci. U.S.A. 107 (46): 19985–19990.
- Stadlmann J, Pabst M, Kolarich D, Kunert R, Altmann F. (2008).
 "Analysis of immunoglobulin glycosylation by LC-ESI-MS of glycopeptides and oligosaccharides". Proteomics 8 (14): 2858–2871.
- Painter PC, Mosher LE, Rhoads C (July 1982). "Low-frequency modes in the Raman spectra of proteins". Biopolymers 21 (7): 1469–72.
- Chou KC (August 1985). "Low-frequency motions in protein molecules. Beta-sheet and beta-barrel". Biophys. J. 48 (2): 289–97
- 8. Hashira S, Okitsu-Negishi S, Yoshino K (August 2000). "Placental transfer of IgG subclasses in a Japanese population". Pediatr Int 42 (4): 337–42.

029120510-v1.0-EN 4/4