

Liquid Reagents - ready to use

FRUCTOSAMINE

NBT

2 Reagents

Diagnostic reagent for quantitative in vitro determination of fructosamine in human serum or plasma on photometric systems

REF

310144 4 x 20 ml 4 x 14 ml Reagent 1 4 x 6 ml Reagent 1a 310140 2 x 20 ml 2 x 14 ml Reagent 1

2 x 6 ml

Reagent 1a

Additionally offered:

310185 3 x 1 ml Fructosamine Calibrator 310181 3 x 1 ml Fructosamine Control N 310182 3 x 1 ml Fructosamine Control P

TEST PARAMETERS

Method: colorimetric, kinetic (2-point kinetic), NBT

increasing reaction

Wavelength: 546 nm Temperature: 37°C

Sample: Serum, heparinized or EDTA plasma

Linearity: up to 1000 µmol/L

Sensitivity: The lower limit of detection is 10 µmol/L

REAGENT COMPOSITION

COMPONENTS CONCENTRATION

Reagent 1:

Nitrotetrazolium-blue 0.57 mmol/L
Sodium cholate 4.9 mmol/L
Potassium chloride 49 mmol/L
Potassium phosphate 49 mmol/L
Uricase (Arthrobacter spec.) > 2.8 kU/L
Detergent 2.1 %

Reagent 1a:

Potassium carbonate buffer, 250 mmol/L

pH 10.3

REAGENT PREPARATION

Sample Start:

Add the contents of one bottle R1a carefully into one bottle R1 (= working reagent). Mix by swirling gently. A slight discolouration of R1 does not interfere with the performance of the assay.

REAGENT STABILITY AND STORAGE

Conditions: protect from light

close immediately after use do not freeze the reagents!

Storage: at 2 – 8 °C

Stability: up to the expiration date

Stability of working reagent (R1 + R1a):

28 days on board (refrigerated)

SAMPLE STABILITY AND STORAGE

serum, plasma: at 20 – 25°C 3 days

at 2 – 8°C 2 weeks at -20 °C 2 month

Discard contaminated specimens.

Centrifuge samples containing precipitate before

performing the assay.

Avoid repeated freezing and thawing. Mix samples well

after thawing.

INTERFERING SUBSTANCES

no interference up to:

ascorbic acid 4 mg/dL (220 mmol/L bilirubin 5 mg/dL haemoglobin 500 mg/dL triglycerides glucose 900 mg/dL (50 mmol/L) uric acid 24 mg/dL (1428 µmol/L)

MANUAL TEST PROCEDURE

Bring reagents and samples to room temperature.

Sample start

Pipette into test tubes	Blank	Cal.	Sample
Working reagent	1000 µl	1000 µl	1000 µl
Sample or Std./Cal.	-	50 µl	50 µl
Distilled water	50 µl	1	-
	•	•	•

Mix, incubate 7 min. at 37°C and read absorbance. Read absorbance again after exactly 1, 2 and 3 min at 37 °C. Determine $\Delta A/m$ inute.

CALCULATION

With calibrator

Fructosamine [μ mol/L] = $\frac{\Delta A \text{ Sample}}{\Delta A \text{ Cal.}}$ x Conc. Cal [μ mol/L]

Note [6,12]:

In hydraemic states (e.g. during pregnancy) it is recommended to relate fructosamine to total protein using the following formula:

Fructosamine corrected for protein = Fructosamine [µmol/L] x 7.2 [µmol/L] total protein [o/dL]

Correction for serum albumin is not recommended. Dysproteinemic states may produce erroneous fructosamine values.

REFERENCE RANGE [9,10]

A reference range of 205 to 285 µmol/L for adults without diabetes was determined in a study of 555 apparently healthy persons between the ages of 20 and 60. In a poorly controlled diabetic patient population, a range of 228 to 563 µmol/L was reported.

A fructosamine concentration above the established expected values is an indicator for hyperglycemia during the preceding 1-3 weeks or longer.

Each laboratory should check if the reference ranges are transferable to its own patient population and determine own reference ranges if necessary.

TEST PRINCIPLE

This colorimetric assay is based on the ability of ketoamines to reduce nitro-tetrazolium-blue (NBT) to formazan in an alkaline solution^[7]. The rate of formation of formazan is directly proportional to the concentration of fructosamine. Uric acid interference is eliminated by Uricase and detergent eliminates matrix effects^[9].

The rate of reaction is measured photometrically at 546 nm.

PERFORMANCE CHARACTERISTICS

LINEARITY

The test has been developed to determine fructosamine concentrations within a measuring range from 10 μ mol/L to 1000 μ mol/L. If values exceed this range, samples should be diluted 1+1 with 0.9% NaCl solution (9 g/L) and the results multiplied by 2.

PRECISION (at 37°C)

Intra-assay	Mean	SD	CV
n = 21	[µmol/L]	μmol/L]	[%]
Sample 1	288	2.58	0.9
Sample 2	272	1.88	0.7
Sample 3	512	4.12	0.8
Inter-assay	Mean	SD	CV
n = 21	[µmol/L]	[µmol/L]]	[%]
Sample 1	296	8.69	2.9
Sample 2	273	3.89	1.4
Sample 3	521	9.01	1.7

METHOD COMPARISON

A comparison of Dialab Fructosamine (y) with a commercially available test (x) using 93 samples (246 – 613 μ mol/L) gave following results: $v = 1.019 \text{ x} - 8.171 \mu$ mol/L: v = 0.996.

QUALITY CONTROL

All control sera with fructosamine values determined by this method can be used.

We recommend:

REF

Cont.

310181 3 x 1 ml Fructosamine Control N **310182** 3 x 1 ml Fructosamine Control P

CALIBRATION

The assay requires the use of a fructosamine calibrator. We recommend:

REF

Cont.

310185 3 x 1 ml Fructosamine Calibrator

Traceability: This method has been standardized against glycated poly-L-lysine and ¹⁴C-glucose.

Two-point calibration is recommended:

S1: 0.9% NaCl

S2: Fructosamine Calibrator

Calibration frequency:

- Every 7 days if reagent bottles are on board the analyser for more than 7 days.
- After reagent bottle change if previous reagent bottles were on board for more than 7 days.
- After reagent lot change
- As required following quality control procedures

AUTOMATION

Special adaptations for automated analyzers can be made on request.

WARNINGS AND PRECAUTIONS

 Take the necessary precautions for the use of laboratory reagents.

WASTE MANAGEMENT

Please refer to local legal requirements.

REFERENCES

- 1. Armbruster DA. Clin Chem 1987;33:2153-2163
- Bablok W et al. A Genaral Regressoin Procedure for Method Transformation. J Clin Chem. Clin Biochem 1988;26:783-790
- 3. Furth AJ. Anal Biochem 1988;175:347-360
- Glick MR, Ryder KW, Jackson SA. Graphical Comparisons of Interferences in Clinical Chemistry Instrumentation. Clin Chem. 1986;32:470-474
- Guder WG Narayanan S, Wisser H, Zawta B. List of Analytes Preanalytical Variables. Brochure in: Samples: From the Patient to the Laboratory. Darmstadt: GOT Verlag, 1996.
- Hanrichs HR, ed. European Fructosamine Workshop. Wien Klein Wochenschr Suppl 1990:180
- 7. Johnson RN, Metcalf PA, Baker JR, Clin Chim Acta 1983;127:87-95
- Kennedy, AL, Merimee TJ. Glycosylated serum protein and haemoglobin A1 levels to measure control of glycemia. Ann Intern Med. 1981;95:56-58
- Kruse-Jarres JD, Jarrausch J, Lehman F Vogt BW, Rietz R Lab Med 1989:13:245-253
- Melzi d'Eril GV, Bosini T, Solerte SB, Fioravanti M, Ferrari E. Wien Klin Wochenschr Suppl 1990;180:60-63
- Passing H Pablok W. A New Biometrical Procedure for Testing the Equality of Measurements from Two Different Analytical Methods. J Clin Chem. Clin Biochem 1983:21:709-720
- 12. Schleicher ED, Olgenmöller B, Wiedenmann E, Gerbitz KD. Clin Chem. 1993;39:625-628
- 13. Schleicher ED, Vogt BW. Clin Chem. 1990;36:136-139
- 14. Tahara Y Shima K. Diabetes Care 1995:18:440-447

DIALAB Produktion und Vertrieb von chemisch – technischen Produkten und Laborinstrumenten Gesellschaft m.b.H. A – 2351 Wiener Neudorf, Austria IZ-NÖ Süd, Hondastrasse, Objekt M55 Phone: ++43 (0) 2236 660910-0

Fax: ++43 (0) 2236 660910-30 e-mail: office@dialab.at