

Phone: +43 (0) 2236 660910-0, Fax: +43 (0) 2236 660910-30, e-mail: office@dialab.at

Bile Acids, Enzymatic cycling

(en) English

REF	Cont	tent					
903100B	1 x	0	.9 LR1	+	3 x	0.1	L R2
903110	4 x	90	mL R1	+	1 x	120	mL R2
903115	4 x	45	mL R1	+	1 x	60	mL R2
903120	4 x	22.5	mL R1	+	1 x	30	mL R2
903125	4 x	9	mL R1	+	1 x	12	mL R2
950911	4 x	45	mL R1	+	3 x	20	mL R2
90410917	3 x	60	mL R1	+	1 x	60	mL R2
9A0808	3 x	20	mL R1	+	1 x	20	mL R2
9T1008	3 x	20	mL R1	+	1 x	20	mL R2
9K0707	4 x	45	mL R1	+	1 x	60	mL R2
9E1808	2 x	37.5	mL R1	+	2 x	12.5	mL R2

For professional in vitro diagnostic use only.

INTENDED USE

Diagnostic reagent for quantitative in vitro determination of total bile acids in human serum or plasma on photometric systems.

DIAGNOSTIC SIGNIFICANCE^{1,2}

Bile acids are metabolized in the liver and, hence, serve as a marker for normal liver function. Serum total bile acids are increased in patients with acute hepatitis, chronic hepatitis, liver sclerosis and liver cancer.

TEST PRINCIPLE

 \leftarrow 3- α -HSD bile acids + Thio-NAD Oxid. bile acids + Thio-NADH $3-\alpha-HSD$ Oxid. bile acids + NADH + bile acids + NAD

In the presence of Thio-NAD, the enzyme 3- α -hydroxysteroid dehydrogenase (3- α -HSD) converts bile acids to 3-keto steroids and Thio-NADH. The reaction is reversible, and 3- α -HSD can convert 3-keto steroids and NADH to bile acids and NAD. The presence of excess NADH efficiently promotes the enzyme cycling and the rate of formation of Thio-NADH is determined by measuring specific change of absorbance at 405 nm

Abbreviations:

Total Bile Acids TBA

NAD Nicotinamide Adenine Dinucleotide

NADH reduced NAD

 $3-\alpha$ -HSD 3-α-Hydroxysteroid dehydrogenase

REAGENT COMPOSITION

COMPONENTS CONCENTRATION Reagent 1

Buffer

Thio-NAD > 0.1 mM

Reagent 2 Buffer

> 2 kU/L 3-α-HSD

MATERIAL REQUIRED BUT NOT PROVIDED

Standard or Calibrator eg:

REF Name Content 903210 Bile Acids Standard 3 mL 1 x

Controls, ea:

00.1.a.0.0, 0g.					
	REF	Name	Content		Description
	D98481	Diacon N	12 x	5 mL	Control normal
	D14481	Diacon N	5 x	5 mL	Control normal
	D98481SV	Diacon N	1 x	5 mL	Control normal
	D98482	Diacon P	12 x	5 mL	Control abnormal
	D14482	Diacon P	5 x	5 mL	Control abnormal
	D98482SV	Diacon P	1 x	5 mL	Control abnormal

- NaCl solution (9 g/L).
- Photometric device
- General laboratory equipment.

REAGENT PREPARATION

The reagents are ready to use

STORAGE AND STABILITY

Store at 2 - 8 °C. Protect from light! Close immediately Conditions

after use

Stability: Unopened reagents are stable until the expiration date

printed on the label.

The reagents are light sensitive. The intrinsic yellow to yellow-brown colour of the reagent does not interfere with the test.

Note: reagents from different lots must not be interchanged.

WARNINGS AND PRECAUTIONS

- Specimens and reagents containing human sourced materials should be handled as if potentially infectious, using safe laboratory procedures.
- Do not swallow! Avoid contact with skin and mucous membranes.
- Please refer to the safety data sheet and take the necessary precautions for the use of laboratory reagents.
- For diagnostic purposes, the results should always be assessed with the patient's medical history, clinical examinations and other findings.
- In the event of an incident related to the device, report it to the manufacturer and your competent authority as required

For professional use only!

SPECIMEN COLLECTION AND STORAGE⁴

Use fresh patient serum, EDTA treated plasma or Lithium heparin plasma samples. TBA concentration is increased after meals; hence, samples should be collected under fasting conditions*

Stability

at 4°C Serum or plasma: 1 week at - 20 °C 3 months

Discard contaminated specimens

It is the responsibility of the individual laboratory to use all available references and/or its own studies to determine specific stability criteria for its laboratory

*This does not apply to women with intrahepatic cholestasis of pregnancy who will need peak bile acid testing and samples should therefore be taken post-prandially.

(not included in the kit - has to be ordered separately) Concentration 50 μmol/L Storage: 2-8°C

up to the expiration date Close immediately after use! Avoid contamination! Protect from light.

TEST PROCEDURE

Colorimetric, 2 Point Kinetic (fixed time), Increasing reaction, Method:

enzymatic cycling

Wavelength: 405 nm Optical path 1 cm 37 °C Temperature:

Bring reagents and samples to room temperature

Pipette into test tubes	Blank	Standard	Sample			
Reagent 1	900 µL	900 µL	900 µL			
Sample	-	-	14 µL			
Standard	-	14 µL	-			
Dist. water	14 µL					
Mix. Incubate for 3 – 5 minut	x. Incubate for 3 – 5 minutes at 37°C, then add:					
Reagent 2	300 µL	300 µL	300 µL			
Mix insulate for 60 and at 27 °C and magazine charriages A1 at 405 pm						

incubate for 60 sec. at 37 °C and measure absorbance A1 at 405 nm. Incubate for another 60 sec. at 37°C and measure absorbance A2 at 405

Calculate change in absorbance: △A= A2 – A1

Automation

Special adaptations for automated analysers can be made on request.

INTERPRETATION OF RESULTS

ΔA Sample - ΔA Blank TBA [umol/L] = x conc. Std [µmol/L] ΛA Std. - ΛA Blank

QUALITY CONTROL AND CALIBRATION

It is suggested to perform an internal quality control. We recommend the DIALAB multi control sera Diacon N (with values in the normal range) and Diacon P (with values in the pathological range). Each laboratory should establish corrective action in case of deviations in control recovery.

Calibration

The assay requires the use of a Bile Acid Standard or Calibrator. We recommend the Dialab Bile Acids Standard. Use 0.9% saline as zero calibrator.

Calibration frequency may vary and is dependent on instrument application.

PERFORMANCE CHARACTERISTICS

Accuracy and precision

The within-run precision and between-run precision were evaluated in samples containing two different bile acid levels (8 µM and 23 µM) in 20 runs. CV ≤ 3.9 % for within-run precision and CV ≤ 2.9 % for between-run precision

Analytical sensitivity

Lower limit of linearity is 1 μ mol/L.

Linearity and measuring range

The test has been developed to determine bile acids concentrations within a measuring range from 1 – 180 μmol/L in serum/plasma

Analytical specificity

No interference up to:

Ascorbic acid 50 mg/dL Bilirubin 50 mg/dL Hemoglobin 500 mg/dL Triglycerides 750 mg/dL

Clinical performance

A comparison between DIALAB Bile Acids, Enzymatic cycling (x) and a commercially available test (y) using 52 serum samples ranging from 0.47 - 131.25 µmol/L gave following results:

 $y = 1.1536 \text{ x} - 0.8567 \mu \text{mol/L}; r = 0.992$

A matched set of 39 serum and lithium heparin plasma samples ranging from 0.14 -

21.18 μ mol/L gave the following results: Lithium heparin = 0.9972 (serum) + 0.1178 μ mol/L; r = 0.9805

Tests were performed on the following instrument: Hitachi 717.

DIALAB Produktion und Vertrieb von chemisch-technischen Produkten und Laborinstrumenten Gesellschaft m.b.H. IZ NOE-Sued, Hondastrasse, Objekt M55, 2351 Wr. Neudorf, Austria Phone: +43 (0) 2236 660910-0, Fax: +43 (0) 2236 660910-30, e-mail: office@dialab.at

TRACEABILITY

The Bile Acids standard is traceable to the Sigma Diagnostics Bile Acids Calibrator.

EXPECTED VALUES³

In serum / plasma: 0 – 10 µmol/L

Each laboratory should check if the reference ranges are transferable to its own patient population and determine own reference ranges if necessary.

- Samples with bile acid levels exceeding the linearity limit should be diluted with 0.9% saline and reassayed incorporating the dilution factor in the calculation of the
- Specimens from patients, who are on Ursodeoxycholic Acid (UDCA treatment, are not suitable for use with this product.

WASTE MANAGEMENT

Please refer to local legal requirements.

LITERATURE

- LaRusso, N.F. et al., Dynamics of Enterohepatic Circulation of Bile Acids, New Engl J M 1974; 291, 689-692.
- Skrede S. et al: Bile acids measured in serum during fasting as a test for liver disease, Clin Chem 1978, 24: 1095-1099. Wu, Alan H.B. Tietz Clinical Guide to Laboratory Tests. 4th ed. St. Louis, MO:
- 3. Saunders/Elsevier, 2006. 170-171.
- Ovadia C, Seed P, Sklavounos A, et al. Association of adverse perinatal outcomes of intrahepatic cholestasis of pregnancy with biochemical markers: results of aggregate and individual patient data meta-analyses. Lancet 2019; 393(10174):899-909.
- CLSI, Procedures for the Handling and Processing of Blood Specimens for Common Laboratory Tests; Approved Guideline, H18-A4, Vol.30 No. 10.

USED SYMBOLS

Symbol Description Cont. Content

