НАБОР ИФА

ДЛЯ ОПРЕДЕЛЕНИЯ 5α-АНДРОСТАН-3α, 17β-ДИОЛ ГЛЮКУРОНИДА

CAN-DG-460, 3α DIOL G

Каталог. № : **CAN-DG-460** Производитель: **Diagnostics Biochem** Методика от **25-10-2010**

Версия 5.0

Canada Inc., (Канада)

Основой при проведении анализа является оригинал инструкции на английском языке, вложенной в набор. Номер и дата версии оригинала и перевода инструкции должны совпадать.

ВВЕДЕНИЕ

Набор предназначен для количественного определения 5α -андростан- 3α , 17β -диол глюкуронида в сыворотке человека методом иммуноферментного анализа. Только для использования в исследовательских целях. Не для использования в диагностике.

ПРИНЦИП МЕТОДА

Данный метод основан на иммуноферментном анализе с использованием конкурентного связывания. Немеченый антиген (присутствующий в образцах, контролях и стандартах) и меченый ферментом антиген (конъюгат) во время инкубации конкурируют за сайтов количество связывания антител. ограниченное иммобилизованных в лунках микропланшета. Затем, после промывки, добавляется ферментный субстрат. Энзиматическая реакция останавливается добавлением стоп-раствора. Абсорбция помощью С микропланшетного анализатора. Интенсивность окрашивания, сформировавшегося энзиматической реакции, обратно пропорциональна концентрации 3α Diol G в образце. Для построения калибровочной кривой используется набор стандартов. Концентрация 3α Diol G в исследуемых образцах может быть рассчитана непосредственно из калибровочной кривой.

КЛИНИЧЕСКОЕ ПРИМЕНЕНИЕ

 5α -андростан- 3α , 17β -диол глюкуронид — это C19 стероид, для его обозначения используется аббревиатура 3α -диол G, 5α -диол G или, просто, α -диол G. Он продуцируется в основном как метаболит тестостерона и дигидротестостерона (DHT). Он в больших количествах продуцируется в периферических тканях, таких, как кожа, особенно вокруг волосяных фолликулов. Стимуляция большими количествами 3α -диол G приводит к избыточному формированию волос, особенно там, где в норме у женщин волосы не присутствуют.

В последние годы интерес к определению этого стероида очень вырос, особенно среди исследователей, изучающих случаи идиопатического гирсутизма у женщин. Среди стероидов, известных предшественники 3α-диол-G, можно перечислить дегидроэпиандростерон (DHEA),дегидроэпиандростерон сульфат (DHEAS), дигидротестостерон (DHT), андростендион и тестостерон. Только для 3α-диол G было показано повышение при гирсутизме и снижение при лечении. Эта корреляция также была показана у пациенток при синдроме поликистозных яичников (РСО). Доказано, что определение 3α-диол G может быть полезным маркером при различных состояниях, включая мониторинг эффективности лечения идиопатического гирсутизма и мониторинг женщин, страдающих РСО. Кроме того, у пациентов, больных диабетом (и мужчин, и женщин), получающих терапию циклоспорином А, было показано повышение уровня 3α-диол G при побочном эффекте, приводящем к появлению волос в областях, где ранее волос не было.

ЗАМЕЧАНИЯ ПО ПРОЦЕДУРЕ МЕТОДА И МЕРЫ ПРЕДОСТОРОЖНОСТИ

- 1. Для успешного проведения анализа необходимо полное понимание данной инструкции пользователями. Достоверные результаты могут быть получены только при строгом и тщательном соблюдении данной инструкции, поставляемой с набором.
- 2. Контрольные материалы или пулы сывороток с высоким и низким значениями должны быть включены в каждую постановку для оценки достоверности результатов.
- Используйте деионизированную или дистиллированную воду, там, где в инструкции указано использование воды для разведения или растворения.

- Для того чтобы избежать контакта с потенциально опасными веществами, необходимо надевать перчатки при работе с реагентами набора и образцами сывороток.
- Все образцы и реагенты набора должны достичь комнатной температуры и быть аккуратно, тщательно перемешаны перед использованием. Избегайте повторных замораживания и оттаивания образцов и реагентов.
- Калибровочная кривая должна быть включена в каждую постановку.
- 7. Контроли должны быть включены в каждую постановку. Их значения, полученные при тестировании, должны соответствовать указанному диапазону допустимых значений.
- Неточное соблюдение процедур, техники анализа, неточное пипетирование, неполные промывки, а также несоблюдение условий хранения реагентов набора может привести к недостоверным результатам, к тому, что результат, полученные для контроля, не попадет в диапазон допустимых значений.
- Присутствие пузырьков воздуха в лунках микропланшета влияет на результаты при считывании оптической плотности (ОП) с использованием микропланшетного анализатора. Перед считыванием результатов тщательно удалите все пузырьки с поверхности жидкости.
- Раствор субстрата (ТМВ) чувствителен к свету и должен оставаться бесцветным при правильном хранении. Нестабильность или загрязнение реагента могут проявиться в вид окрашивания реагента в голубой цвет. В этом случае реагент использовать нельзя.
- Буфер для анализов чувствителен к свету и должен храниться в оригинальной темной бутылочке и не подвергаться воздействию прямых солнечных лучей.
- При внесении субстрата и стоп-раствора не используйте пипетки, в которых эти растворы могли бы контактировать с металлическими частями.
- Для предотвращения контаминации реагентов и образцов используйте новые одноразовые сменные наконечники для каждого реагента, контроля, стандарта или образца.
- Не смешивайте и не используйте реагенты из других наборов или лотов, не используйте набор после истечения срока годности, указанного на этикетке.
- Реагенты набора должны считаться опасными веществами и с ними необходимо работать, соблюдая принятые в лаборатории правила безопасности.

ОГРАНИЧЕНИЯ

- Все реагенты, входящие в состав набора, предназначены для непосредственного определения 3α-диол G в сыворотке человека. Данный набор не предназначен для определения 3αдиол G в слюне, плазме или других образцах человеческого или животного происхождения.
- Не используйте образцы с сильным гемолизом, липемией, желтухой, или неправильно хранившиеся образцы.
- Любые образцы или контрольные сыворотки, содержащие азид натрия или тимерозал не совместимы с данным набором. Их анализ может привести к ложным результатам.
- Для разведения сывороток с высокими концентрациями может быть использован только калибратор А. Использование любого другого реагента может привести к ложным результатам.
- 5. Результаты, полученные с помощью данного набора, никогда не должны использоваться как единственное основание для постановки диагноза. Например, присутствие гетерофильных антител у пациентов, регулярно контактирующих с животными или с материалами животного происхождения, потенциально может влиять на результаты иммунологического анализа. Следовательно, клиническая диагностика должна базироваться на полном обследовании пациента, учитывая, в том числе, интенсивность контактов с животными/продуктами, если можно подозревать ложные результаты.

ПРЕДОСТЕРЕЖЕНИЯ И МЕРЫ БЕЗОПАСНОСТИ ПОТЕНЦИАЛЬНО БИООПАСНЫЕ МАТЕРИАЛЫ

Сыворотка человека, которая могла быть использована при приготовлении реагентов, стандартов и контролей, была протестирована с отрицательными результатами на содержание поверхностного антигена гепатита В, антител к ВИЧ и вирусу гепатита С. Однако не существует метода, полностью гарантирующего отсутствие таких инфекционных агентов как ВИЧ, гепатит В, С и других. Таким образом, реагенты должны рассматриваться как биологически опасные материалы и обращаться с ними необходимо в соответствии с нормами, принятыми в лаборатории для образцов крови.

ХИМИЧЕСКАЯ ОПАСНОСТЬ

Избегайте контактов с реагентами, содержащими ТМВ, перекись водорода и соляную кислоту. При контакте с такими реагентами

тщательно промойте место контакта большим количеством воды. ТМВ может быть канцерогенным веществом.

ЗАБОР И ХРАНЕНИЕ ОБРАЗЦОВ

Для проведения анализа в дублях необходимо приблизительно 0.2 мл сыворотки. Соберите 4-5 мл крови в соответствующую надписанную пробирку и дайте ей свернуться. Центрифугируйте и аккуратно соберите сыворотку. Храните при 4 °C не более 24 часов. Для более длительного хранения необходимо заморозить образец при температуре -10 °C или ниже. Считайте все образцы происхождения человеческого потенциально инфекционно опасными и обращайтесь С ними соответствующими С предосторожностями.

ПОДГОТОВКА ОБРАЗЦОВ

Подготовка образцов не требуется.

ТРЕБУЕМЫЕ, НО НЕ ПОСТАВЛЯЕМЫЕ МАТЕРИАЛЫ И ОБОРУДОВАНИЕ

- 1. Дозаторы на 50, 100, 150 и 300 мкл
- 2. Одноразовые сменные наконечники
- 3. Деионизированная или дистиллированная вода
- 4. Микропланшетный шейкер
- Микропланшетный фотометр с длиной волны измерения 450 нм и верхним пределом ОП 3.0 или более* (см. шаг 10 процедуры)

ПОСТАВЛЯЕМЫЕ РЕАГЕНТЫ

1. Микропланшет, покрытый кроличьими антителами к 3α Diol G (с «ломаемыми» стрипами) - 96-ячеечный микропланшет (8х12), покрытый поликлональными антителами в закрываемом пакете с осушителем. Готов к использованию.

Хранение: охлажденным при 2 – 8 °C

Стабильность: 12 месяцев или до срока годности, указанного на

2. Концентрат конъюгата 3α Diol G-пероксидаза хрена (HRP) – требует приготовления.

Содержание: Конъюгат 3α Diol G-HRP в белковом буфере с консервантом, не содержащим ртути.

Объем: 300 мкл во флаконе

Хранение: охлажденным при 2 - 8°C

Стабильность: 12 месяцев или до срока годности, указанного на этикетке.

Приготовление: Перед использованием развести концентрат в соотношении 1:50 в рабочем буфере (например, 40 мкл HRP в 2 мл буфера для анализов). При использовании всего микропланшета разведите 240 мкл HRP в 12 мл рабочего буфера. Разведенный неиспользованный конъюгат должен быть выброшен.

3. Калибраторы 3α Diol G - готовы к использованию.

Содержание: 6 флаконов, содержащих 3α Diol G в белковом буфере с консервантом, не содержащим ртуть. Приготовлены добавлением известных количеств 3α Diol G в матрикс.

* В таблице приведены приблизительные концентрации, точные значения указаны на этикетках флаконов.

Калибратор	Концентрация (нг/мл)	Объем/флакон (мл)
Калибратор А	0	2.0
Калибратор В	0.25	0.6
Калибратор С	1	0.6
Калибратор D	3	0.6
Калибратор Е	10	0.6
Калибратор F	50	0.6

Хранение: охлажденным при 2 – 8°C

Стабильность: невскрытые флаконы хранятся 12 месяцев или до срока годности, указанного на этикетке. После вскрытия калибраторы должны быть использованы в течение 14 дней или аликвотированы и заморожены для более длительного хранения. Избегайте повторных циклов замораживания-оттаивания.

4. Контроли – готовы к использованию.

Содержание: 2 флакона, содержащие 3α Diol G в белковом буфере с консервантом, не содержащим ртуть. Приготовлен с добавлением определенного количества 3α Diol G в буфер. Ожидаемое значение и допустимый диапазон указаны на этикетке флакона.

Объем: 0.6 мл во флаконе.

Хранение: охлажденным при 2 - 8 °C

Стабильность: невскрытый флакон хранится 12 месяцев или до срока годности, указанного на этикетке. После вскрытия контроль должен быть использован в течение 14 дней или аликвотированы и заморожены для более длительного хранения. Избегайте повторных циклов замораживания-оттаивания.

5. Концентрат промывочного буфера – требует приготовления. Содержание: 1 флакон, содержащий буфер с неионным детергентом и консервантом, не содержащим ртуть.

Объем: 50 мл во флаконе.

Хранение: охлажденным при 2 – 8 °C

Стабильность: хранится 12 месяцев или до срока годности, указанного на этикетке.

Приготовление: Развести в соотношении 1:10 дистиллированной или деионизированной водой перед использованием. Если для анализа используется весь микропланшет, разведите 50 мл концентрата промывочного буфера 450 мл воды.

6. Рабочий буфер – готов к использованию*.

Содержание: 1 флакон, содержащий белковый буфер с консервантом, не содержащим ртуть.

Объем: 15 мл во флаконе.

Хранение: охлажденным при 2 – 8°C

Стабильность: хранится 12 месяцев или до срока годности, указанного на этикетке.

*Перед использованием подогреть для полного растворения.

7. Субстрат ТМБ - готов к использованию.

Содержание: 1 флакон, содержащий тетраметилбензидин и перекись водорода в не-DMF или DMSO содержащем буфере. Объем: 16 мл во флаконе.

Хранение: охлажденным при 2 – 8°C

Стабильность: хранится 12 месяцев или до срока годности, указанного на этикетке.

8. Стоп-раствор - готов к использованию.

Содержание: 1 флакон, содержащий 1М серной кислоты.

Объем: 6 мл во флаконе.

Хранение: охлажденным при 2 – 8°C

Стабильность: хранится 12 месяцев или до срока годности, указанного на этикетке.

ПРОЦЕДУРА МЕТОДА

Подготовка образцов:

Не требуется.

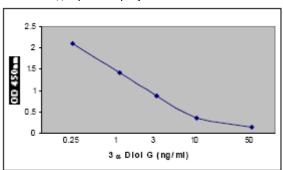
Все реагенты привести к комнатной температуре перед использованием. Калибраторы. Контроли и образцы должны тестироваться в дублях. Вся процедура анализа должна проводиться непрерывно.

- Приготовить рабочие растворы конъюгата 3α Diol G и промывочного буфера.
- 2. Отделить требуемое количество микролуночных полосок. Неиспользуемые полоски запечатать обратно в пакет и поместить в холодильник.
- Пипетировать по 50 мкл калибратора, контроля и образца в дублях в помеченные ячейки.
- Пипетировать 100 мкл конъюгата рабочего раствора в каждую лунку (рекомендуется использование мультиканальной пипетки).
- 5. Инкубировать в течение 30 минут (приблизительная скорость 200 об/мин) при комнатной температуре на шейкере.
- 6. Промыть лунки 3 раза с 300 мкл разбавленного промывочного раствора на каждую лунку и постучать микропланшетом по фильтровальной бумаге, убедиться, что он сухой (рекомендуется использование автоматического промывочного устройства).
- Пипетировать 150 мкл Субстрата ТМБ в каждую лунку с одинаковой скоростью.
- Инкубировать на шейкере в течении 10-15 минут при комнатной температуре (или до тех пор, пока калибратор А не достигнет темно-синего окраса для необходимой ОП).
- Пипетировать 50 мкл стоп раствора в каждую лунку с одинаковой скоростью как в шаге 7.
- Определить ОП ячеек с помощью микропланшетного ридера при 450 нм в течение 20 минут после добавления стоп раствора.

*если ОП выходит за верхний предел обнаружения или если фильтр в 450 нм недоступен, можна использовать фильтр с длиной волны 405 или 415 нм. ОП будут ниже, но это не повлияет на результаты.

РАСЧЕТ РЕЗУЛЬТАТОВ

- 1. Рассчитайте среднее значение оптической плотности дублей для каждого калибратора.
- Постройте калибровочную кривую, используя полулогарифмическую бумагу, откладывая по оси Y среднее значение оптической плотности калибраторов, а по оси X - их концентрацию. Если возможно, рекомендуется использование программного обеспечения для построения 4-параметрической или 5-параметрической калибровочной кривой.
- 3. Рассчитайте среднее значение оптической плотности дублей для каждого образца.
- 4. Определите значения концентраций аналита в образцах непосредственно из калибровочной кривой.


 Если результат превышает 50 нг/мл, образец необходимо развести стандартом А в соотношении не более чем 1:8. Полученный результат необходимо умножить на коэффициент разведения.

ТИПИЧНЫЕ РЕЗУЛЬТАТЫ, СВЕДЕННЫЕ В ТАБЛИЦУ:

THIN HOLE I COMBINATOR, COLACTINOLE D'INDINIGY.				
Стандарт	ОП 1	ОП 2	Средняя ОП	Значение (нг/мл)
Α	2.480	2.474	2.477	0
В	2.102	2.106	2.104	0.25
С	1.428	1.413	1.421	1
D	0.877	0.883	0.880	3
E	0.360	0.368	0.364	10
F	0.147	0.143	0.145	50
неизвестный	0.598	0.596	0.597	5.4

ПРИМЕР ТИПИЧНОЙ КАЛИБРОВОЧНОЙ КРИВОЙ

Приводится только в демонстрационных целях и не должен использоваться для расчета результатов.

РАБОЧИЕ ХАРАКТЕРИСТИКИ

Чувствительность:

Нижний предел обнаружения рассчитан исходя из калибровочной кривой вычитанием двух стандартных отклонений из среднего значения ОП нулевого стандарта (стандарт A), измеренного 10 раз. Чувствительность метода dbc Direct 3α Diol G ELISA составила 0.1 нг/мл.

Специфичность (перекрестная реактивность):

Перечисленные ниже соединения были протестированы на перекрестную реактивность с помощью данного метода, при 100% перекрестной реактивности для 3α Diol G:

Стероид	Перекрестная реактивность, %
3α Diol G	100
Тестостерон	0.2
Прогестерон	0.16
Андростендион	0.14
кортизол	0.05

Кроме того, следующие перечисленные соединения были протестированы и перекрестная реактивность составила менее 0.01%: кортикостерон, дегидроэпиандростерон, дигидротестостерон, эпиандростерон, 17β -эстрадиол и эстрон.

Точность внутри серии:

3 образца были проанализированы 10 раз каждый, по одной калибровочной кривой. Результаты (в $\mathsf{нг}/\mathsf{мл}$) приведены ниже:

Образец	Среднее	SD	CV%
1	0.87	0.07	7.8
2	6.86	0.49	7.2
3	21.26	1.29	6.0

Точность между сериями:

3 образца анализировали 10 раз каждый в течение 4 недель. Результаты (в нг/мл) приведены в таблице:

Образец	Среднее	SD	CV%
1	0.98	0.10	10.4
2	7.05	0.46	6.5
3	20.92	2.26	10.8

Воспроизводимость

Насыщенные образцы были приготовлены добавлением определенных количеств 3α Diol G к трем образцам сывороток пациентов. Результаты (в нг/мл) приведены в таблице:

образец	Полученный результат	Ожидаемый результат	Извлечение %
1 не		•	
обогащенный	0.67	-	-
+0.5	1.07	1.17	91.4
+5.0	4.99	5.67	88.0
+15.0	12.66	15.67	80.8
2 не			
обогащенный	1.83	-	-
+0.5	2.07	2.33	88.8
+5.0	6.18	6.83	90.5
+15.0	17.64	16.83	104.8
3 не			
обогащенный	12.76	-	-
+0.5	15.32	13.26	115.5
+5.0	19.22	17.76	108.2
+15.0	22.68	27.76	81.7

Линейность

3 образца сывороток пациентов были разведены калибратором А. Результаты (в нг/мл) приведены в таблице:

образец	Полученный	Ожидаемый	Извлечение
	результат	результат	%
1	6.24	-	-
1:2	2.83	3.12	90.7
1:4	1.55	1.56	99.4
1:8	0.74	0.78	94.9
2	13.55	-	-
1:2	6.00	6.77	88.6
1:4	2.71	3.39	80.0
1:8	1.70	1.64	103.6
3	17.05	-	-
1:2	6.93	8.53	81.2
1:4	4.09	4.26	96.0
1:8	2.34	2.13	109.8

ОЖИДАЕМЫЕ НОРМАЛЬНЫЕ ЗНАЧЕНИЯ

Как и для всех клинических анализов, каждая лаборатория должна самостоятельно установить свой собственный диапазон ожидаемых нормальных значений.

Группа	Интервал (нг/мл)
Мужчины	1.53-14-82
предклимактерический	0.22-4.64
послеклимактерический	0.61-3.71
пубертатный период (женщины)	0.51-4.03

ОФИЦИАЛЬНЫЙ ДИСТРИБЬЮТОР

ООО «ДИАМЕБ» ул. Чорновола, 97 г. Ивано-Франковск, 76005 тел.: +38 (0342) 775 122 факс: +38 (0342) 775 123

e-mail: <u>info@diameb.ua</u> www.diameb.com