

Набор для определения АЗОТА МОЧЕВИНЫ КРОВИ (АМК)

Kam. № : B550

Производитель: Teco Diagnostics (США)

Методика от **12-2001**

<u>Внимание</u>: основой при проведении анализа есть оригинал инструкции на англ.языке.

НАБОР РЕАГЕНТОВ АЗОТА МОЧЕВИНЫ

Для определения азота мочевины в сыворотке человека.

ВВЕДЕНИЕ

Моча - основной конечный продукт метаболизма азота в белке. Он синтезируется в печени из аммиака, который производится дезаминированием аминокислоты. Определение азота мочевины сыворотки - важный указатель функционирования почени. Пониженное функционирование печени или увеличение распада протеиновой ткани связаны с увеличенными уровнями азота мочевины, тогда как повреждение печени или беременность связаны со сниженным уровнями.

В 1965 Тальке и Шуберт продставили процедуру, использующую уреазу и глутаматную дегидрогеназу (ГД). Тиффани и др. позже преобразовали эту систему в кинетическую процедуру, которая уменьшила время реакции и позволила прямое добавление образцов. Эта система использует кинетический метод, обеспечивая быстрый анализ для количественного определения азота мочевины.

ПРИНЦИП

Последовательность ферментативной реакции, используемая в анализе азота мочевины, представлена следующим образом:

Мочевина + H20 <u>Уреаза</u> > 2NH3 + CO2 NH3 + 2-Оксоглутарат + NADH +H+ <u>ГД</u> > L-глутамат + NAD+ + H20

Моча в образце гидролизируется уреазой, образуя аммиак и углекислый газ. Освобожденный аммиак реагирует с 2-оксоглутаратом, в присутствии ГД и кофермента NADH образует L-глутамат. В этой реакции 2 моля NADH окисляются в NAD для каждого моля гидролизированной мочи. Как следствие уменьшение в спектральной поглощательной способности NADH при 340 нм пропорционально уровню азота мочевины в образце.

СОСТАВ РЕАГЕНТОВ

При соответствующем перерастворении наш реагент АМК содержит следующее:

- 1. Реагент АМК: (концентрации относятся к ресуспендированному реагенту) NADH 0.28 мМ/л, уреазы 3 000 Е/л, глутамат дегидрогеназы 15 000 Е/л, 2-оксоглутарата 4.0 мМ/л, буфера 7.8, активаторов и нереактивных стабилизаторов.
- 2. Стандарт азота мочевины (20 мг/дл): Моча.

предупреждения и предосторожности

- 1. Только для диагностического использования in vitro.
- 2. Реактивы содержат азид натрия, который может быть ядовитым если принять вонутрь. Азид натрия может также реагировать с трубопроводами из свинца и меди, взрывоопасные азиды металлов. Обратитесь к паспорту безопасности материала по поводу любого обнаруженного риска, опасности или информации по безопасности.
- 3. Образцы человеческой сыворотки необходимо считать инфекционными и требуют должного обращения.

ХРАНЕНИЕ И СТАБИЛЬНОСТЬ

И реагент АМК и стандарт должны храниться при 2 - 8 ° С до перерастворения. Реагент может использоваться до окончания срока годности, указанного на этикетке упаковки. После перерастворения реагент стабилен в течение двух (2) дней при температуре комнаты (18 - 25°C) и в течение двадцати одного (21) дня если хранить при 2 - 8°C. Реагент должен быть прозрачным и бесцветным.

УХУДШЕНИЕ РЕАГЕНТА

Реагент нужно удалить если:

- 1. Обнаружена мутность; мутность может быть признаком загрязнения.
- 2. Влажность проникла во флакон и произошло слипание.

3. Перерастворенный реагент имеет спектральную поглощательную способность бланка реагента менее 1.0 при 340 нм (1 см Н.П.).

СБОР ОБРАЗЦОВ

- 1. Исследуемые образцы сыворотки не должны подвергаться гемолизу.
- 2. Недолжна использоваться плазма, содержащая антикоагулянты.
- 3. Весь материал, вступающий в контакт с образцом, не должен содержать аммиака и тяжелых металлов.
- 4. Моча в сыворотке считается стабильной в течение семидесяти двух часов, охлажденная при 2-8 °C. Неохлажденная сыворотка должна использоваться в течение восьми часов.

ВЛИЯЮЩИЕ ВЕЩЕСТВА

Противосвертывающие средства, такие как фторид, цитрат и ЭДТА могут ингибировать уреазу и из следует избегать. Ионы аммония в воде или других веществах может ошибочно увеличивать значения мочи. Янг и др. дали всесторонний обзор влияний лекарственных средств

ТРЕБУЕМЫЕ МАТЕРИАЛЫ, НО НЕ ПРЕДОСТАВЛЕННЫЙ

- 1. Пипетки, чтобы точно измерить требуемые объемы.
- 2. Пробирки / держатель.
- 3. Таймер.
- 4. Дистиллированная или деионизированная вода, где необходимо.
- 5. Спектрофотометр с терморегулирующей кюветкой.

ОБЩИЕ УКАЗАНИЯ

Реактив для АМК предназначен для использования или как автоматизированная процедура на биохимических аппаратах, или как ручная процедура на подходящем спектрофотометре.

ПРОЦЕДУРА (АВТОМАТИЗИРОВАННАЯ)

См. соответствующую аппликацию, располагаемую производителем.

ПРОЦЕДУРА (РУЧНАЯ)

- 1. Перерастворите реагент согласно инструкциям.
- 2. Обнулите спектрофотометр водой при 340 нм.
- 3. Пипетируйте 1.0 мл реагента АМК в пробирки и предварительно подогрейте до 37°C.
- 4. В одну кюветку за один раз добавьте 0.01 мл (10 мкл) образца (стандарта или сыворотки).
- 5. Через 30 сек. измерьте и зафиксируйте спектральную поглощательную способность (A1).
- 6. Еще через 60 сек. проведите второе считывание спектральной поглощательной способности (A2).
- 7. Определите ΔA между этими двумя считываниями (A1 A2).
- 8. Повторите процедуру для каждого образца.

*TC – ВМЕСТО СТАНДАРТА МОЖЕТ ИСПОЛЬЗОВАТЬСЯ МНОГОЦЕЛЕВОЙ КАЛИБРАТОР.

ПРИМЕЧАНИЕ:

- Для более высокой линейности, считывайте только в течение 30 секунд вместо 60 секунд как требуется в процедуре.
- •Если используемый спектрофотометр требует заключительного объема более 1.0 мл для точного считывания, используйте 0.025 мл (25 мкл) образца, до 3.0 мл реагента. Выполняют тест как описано выше.

ПРОЦЕДУРНЫЕ ОГРАНИЧЕНИЯ

Реагент линеен до 80 мг/дл азота мочевины. Образцы со значениями выше 80 мг/дл должны быть разбавлены 1:1 0.9% солевым раствором, повторно проанализированы и результат умножен на 2.

вычисления

(AI -A2) = изменение абсорбции между (A1 -A2) неизв. × концентрация = АМК (мг/дл)

(А1 -А2) стандарт стандарта

Пример: Если неизвестное значение составило A1 = 1.5 и A2 = 1.0, стандарт A1 = 1.5 и A2 = 0.9, и концентрация стандарта = 20 мг/дл тогда:

 $(1.5 - 1.0) \times 20 = 0.5 \times 20 = 17$ мг/дл (1.5 - 0.9) 0.6

ЕДИНИЦЫ SI:

мг/дл × <u>10</u> = мг/дл × 0.357

Где 10 = преобразование дл в л 28 = молекулярный вес азота

Пример: если 17 мг/дл является результатом, тогда 17 × 0.357 = 6.06 ммоль/л

КОНТРОЛЬ КАЧЕСТВА

Рекомендуется включать контроли в каждый набор анализа. Для контроля качества может использоваться коммерчески доступный материал контроля с установленными значениями АМК. Приписанное значение контрольного материала должно быть подтверждено выбранным применением. Неполучение соответствующего диапазона значений в анализе контрольного материала может указывать или ухудшение реагента, неправильную работу аппарата или процедурные ошибки.

ОЖИДАЕМЫЕ ЗНАЧЕНИЯ

7-18 мг/дл.

Настоятельно рекомендуется, чтобы каждая лаборатория установила свой собственный нормальный диапазон.

РАБОЧИЕ ХАРАКТЕРИСТИКИ

- 1. <u>Линейность:</u> 80 мг/дл.
- 2. Сравнение: с использованием ферментативной процедуры привело к коэффициенту корреляции 0,96 с уравнением регрессии у = 0,95x + 3,67.
- 3. Точность:

Среднее значение	В пределах процедуры	
(мг/дл)	CO	KB (%)
12	0,5	4,6
43	0,4	1,0

Среднее значение	Между процедурами	
(мг/дл)	CO	KB (%)
12	0,5	4,6
43	1,6	3,8

ЛИТЕРАТУРА

(См. в оригинале инструкции).

ИНФОРМАЦИЯ ДЛЯ ЗАКАЗА:

ЧМП «ДИАМЕБ» Ул. Чорновола, 97, г. Ивано-Франковск, 76005 Тел.: (0342) 775122 Тел/факс: (0342) 775612 E-mail: <u>info@diameb.com</u> www.diameb.com