

Набор ИФА для определения в человеческой сыворотке ЛЮТЕИНИЗИРУЮЩЕГО ГОРМОНА

Каталог. № : E-HLH-1Р *Количество* : 96

Производитель: Dima Diagnostika (Германия)

Методика от **11-2005**

<u>Внимание</u>: основой при проведении анализа есть оригинал

инструкции на англ. языке.

ОБЩАЯ ИНФОРМАЦИЯ

Длина волны - фильтр измерения: 450 нм Время инкубации - 80 минут при 37°C (10/60/10) Ферментный коньюгат - HRP (Пероксидаза Хрена) Субстрат - ТМВ (3,3,5,5 – Тетраметилбензидин) Образец - Сыворотка или Плазма Стабильность образцов - неразбавленных: 2 дня при 2-8°C; для более длинного хранения при - 20 °C Диапазон калибровки - 0 – 200 млЕд /мл Чувствительность - 1.0 мМЕ/мл

КОМПОНЕНТЫ НАБОРА

- 1. **Микропланшет,** 12х6х**8 полосок** (с разделяющимися лунками); 96 лунок, покрытых анти-моноклональным ЛГ. **Готов к использованию.**
- 2. **Калибраторы** (5), **5 флаконов** по 0,4 (0,2) мл. Концентрации: 0; 5; 20; 75 и 200 млЕд./мл. **Готовы к использованию.**
- 3. **Ферментный коньюгат**, 1 флакон 12 (6) мл анти-моноклонального ЛГ HRP коньюгата. **Готов к использованию**.
- 5. **Раствор Субстрата**, 1 флакон ТМБ-субстрата, 12 (6) мл, 0,25 г/л. **Готов к использованию.**
- 6. **Стоп Раствор**, 1 флакон серной кислоты 0,15 моль/л, 12 (6) мл. **Готов к использованию.**

НЕОБХОДИМЫЕ, НО НЕ ПОСТАВЛЯЕМЫЕ МАТЕРИАЛЫ

- 1. Неионизированная или дистиллированная вода.
- 2. Объемные пробирки и подставки.
- 3. Подставки для промывки
- 4. Микропипетки от 25 до 1000 мкл.
- 5. Многоканальная пипетка.
- 6. Этаповый координатный стол.
- 7.Микропланшетный фотометр, способный проводить измерения при (450 нм \pm 10 нм). Если доступен фотометр с двойной длиной волны, контрольный фильтр нужно установить на 600-690 нм.
- 8. Автоматический микропланшетный вошер, способный распределению 200-300 мкл.

ОБЪЯСНЕНИЕ АНАЛИЗА

ЛГ IEMA анализ основан на одновременном связывании человеческого ЛГ с двумя моноклональными антителами, одним, иммобилизированным на микролунках планшета, другим, конъюгированным с пероксидазой хрена (HPR).

После инкубации связанное/свободное отделение проводится простой промывкой твердой фазы, затем добавляется раствор субстрата (ТМВ). После того, как прошло соответствующее время для максимального развития цвета, ферментная реакция останавливается и определяется абсорбция.

ЛГ концентрация в образце вычисляется исходя из ряда стандартов. Интенсивность цвета пропорциональна концентрации ЛГ в образце.

ПРИНЦИПЫ АНАЛИЗА

Данный ELISA анализ – непрямой твердофазный иммуноанализ, основанный на принципе сэндвича.

Микролунки покрыты моноклональным анти-ЛГ, с последовательным блокированием нереактивных краев, чтобы сократить неспецифическое связывание.

Этап 1 ЛГ антигены, присутствующие в калибраторах и образцах пациентов привязываются к покрытому антителу.

Этап 2 Комплекс антиген-антитело вступает в реакцию с ферментом (HRP), меченным моноклональным анти-ЛГ коньюгатом, который ведет к разделению ЛГ между антителом твердой фазы и ферментным коньюгатом.

Этап 3 Фермент преобразовывает добавленный субстрат (ТМВ), создав цветной раствор.

Этап 4 Интенсивность изменения цвета, которое пропорционально концентрации антител в образцах считывается микропланшетным фотометром при 450 нм. Результаты выражены в мМЕ/мл.

ОЖИДАЕМЫЕ ЗНАЧЕНИЯ

Каждая лаборатория должна установить свои собственные стандартные диапазоны, основанные на пациентах.

Значения ЛГ сыворотки или плазмы определены в следующих диапазонах:

Ж:	Фолликулярная фаза	1.5	_	8.0	мМЕ/мл
	Лютеинизирующая фаза	0.2	_	6.5	мМЕ/мл
	Фаза овуляции	5.0	_	24.0	мМЕ/мл
	Менопауза	16.0	_	90.0	мМЕ/мл

РЕАГЕНТЫ

Хранение

□ Хранить все реагенты при 2° - 8°C. Не замораживать!

Подготовка

□ Покрытые микролуночные полоски только для одноразового использования.

□ Калибраторы, раствор субстрата, ферментный коньюгат и стоп раствор готовы и использованию и не нуждаются в разбавлении

ПРЕДОСТЕРЕЖЕНИЯ ДЛЯ ПОЛЬЗОВАТЕЛЕЙ

- ВНИМАНИЕ: Не существует методов тестирований, на 100% гарантирующих отсутствие компонентов вируса Гепатита Б, ВИЧ (HIV/HTLV-III/LAV), или других инфекций. Поэтому все продукты, содержащие человеческой крови компоненты должны рассматриваться как потенциально инфицированные. Поэтому при работе с ними необходимо соблюдать все меры предосторожности, установленные лабораторной практике.
- 2. Избегайте контакта кожи со Стоп-раствором. Это может вызвать раздражения и ожоги.
- 3. Немедленно после использования закройте реагенты крышками. Не путайте крышки от реагентов.
- Растворы, содержашие добавки или консерванты, такие как азид соды, не должны использоваться в ферментной реакции.
- 5. Только для диагностики ин-витро.
- 6. Не используйте в исследовании компоненты из наборов разных партий.

ЗАБОР И ОБРАЩЕНИЕ С ОБРАЗЦАМИ

- Только образцы сыворотки или плазмы необходимо использовать в этой процедуре. Не нужно пациентам сдавать кровь натощак, и не нужны никакие специальные подготовки.
- 2. Высокогемолизированные, липемические и биологически зараженные образцы, могут мешать проведению анализа и не должны использоваться. Ни билирубин, ни гемолиз не имеют существенного влияния на процедуру.
- Образцы необходимо хранить максимум до 2 дней при 2-8°C. Для более длительного хранения образцы необходимо заморозить до -20°C до исследования. Образцы с концентрацией более 200 млЕд./мл необходимо разбавить разбавителем образца.
- 4. См. Подготовка Образцов.

ПРОЦЕДУРА

Процедурные замечания

1. Перед исследованием все реагенты и образцы должны иметь комнатную температуру. Все реагенты перемешивать без образования пены.

- 2. После начала теста все этапы должны быть завершены без перерывов.
- Для каждой пробы использовать новые одноразовые наконечники пипеток.
- 4. Абсорбция исходит из времени инкубации и температуры. До начала исследования рекомендуется приготовить все реагенты, снять крышки, установить требуемое количество лунок, и т.д., чтобы пройти все этапы исследования без остановки.

Подготовка образцов

Обычно нет необходимости в разбавлении; разбавьте образцы с концентрациями выше 200 мМЕ/мл Стандартом А 1.1.

ПРОЦЕДУРА АНАЛИЗА

 Используйте протокол размещения образцов в лунках (см. Рисунок ниже), где используются **5 калибраторов** (стандартов) (А-Е) и **1 бланк**. Пользователь может провести на выбор анализ в паре:

_	па выобр апализ в парс.													
	1	2	3	4	5	6	7	8	9	10	11	12	Кал.	Конц. мМЕ/мл
a	В	SD	P3										SA	0
b	SA	SE	P4										SB	5
С	SA	SE	P4										SC	20
d	SB	P1	P										SD	75
e	SB	P1	P										SE	200
f	SC	P2												
g	SC	P2												
h	SD	Р3												

- 2. Возьмите требуемые лунки из сумки и верните неиспользованные полоски в запечатанную сумку в холодильнике. Безопасно разместите микролунки в дополнительном держателе.
- Пипеткой внесите по 25 мкл калибратора и образца в лунки. Инкубируйте 10 минут при комнатной температуре.
- Добавьте 100 мкл ферментного коньюгата в каждую лунку планшета кроме бланка, накройте планшет и инкубируйте 60 минут при комнатной температуре.
- Внесите 200-300 мкл дистиллированной воды, декантируйте или аспирируйте содержимое лунок. Повторите процедуру 4 раза, в сумме – 5 раз.
- 6. Внесите **100 мкл раствора субстрата** в каждую микролунку в том же порядке и времени как для ферментного коньюгата и бланка.
- Инкубируйте 10 минут при комнатной температуре в темноте.
- 8. Добавьте **100 мкл стоп раствора** в каждую микролунку, в том же порядке и времени как для раствора субстрата.
- 9. Используя микропланшетный фотометр, считайте абсорбцию каждой микролунки при **450 нм относительно бланка**. Образовавшийся цвет стабилен, по крайней мере 30 мин. Считайте оптическую плотность в течении этого времени.

ОЦЕНКА АНАЛИЗА

Средняя абсорбция и процентное соотношение.

- 1. Вычислите средние показатели абсорбции (Ем), соответствующие единичным точкам стандартной кривой и показатели каждого образца.
- 2. Отнимите значение средней абсорбции нулевого стандарта от значений средней абсорбции стандартов и образцов.
- 3. Нарисуйте стандартную кривую на графопостроительной бумаге выводя значения абсорбции стандарта против соответствующей концентрации ЛГ.
- 4. Считайте концентрации ЛГ калибраторов и образцов.

ОГРАНИЧЕНИЯ ПРОЦЕДУРЫ

Анализ не должен проводится с высокогемолизированными, биологически загрязненными или липемическими образцами. Этот метод нужно использовать только для анализа образцов человеческой сыворотки.

РАБОЧИЕ ХАРАКТЕРИСТИКИ

Чувствительность

Минимально определенная концентрация человеческого ЛГ в данном анализе составляет 1,0 мМЕ/мл.

Специфичность (перекрестная реактивность)

Следующие маериалы были проверены на перекрестную реактивность:

β - hCG	100.0 %
HCG	4,0 %
hLH	100,0 %
hFSH	3,0 %
hTSH	0,02 %

Точность

Внутритестовое отклонение

Billy i priliterio Bee e il dicilio il ilie							
Образец	1	2	3				
Количество копий	16	16	16				
Среднее ЛГ (мМЕ/мл)	3,6	21,2	48,2				
Стандартное отклонение	0,21	1,15	3,02				
Коэффициент вариации (%)	5.8	5.4	6.25				

Междутестовое отклонение

Образец	1	2	3
Количество копий	16	16	16
Среднее ЛГ (мМЕ/мл)	3,4	20,6	51,3
Стандартное отклонение	0,26	1,51	4,33
Коэффициент вариации (%)	7,6	7,2	8,44

Восстановление

Среднее восстановление составило 99,5 % по соотношению к первичным концентрациям.

Ожидаемая концентрация	Полученная концентрация	Восстановление		
8.5	8.8	103.5		
14.6	13.7	93.8		
45.2	43.8	96.9		
68.8	73.4	106.7		
125.1	120.9	96.6		

Линейность

В линейном исследовании были последовательно разбавлены нулевым стандартом два образца пациентов. Среднее восстановление составило 102,1%.

Ожидаемая	Полученная	Восста-
концентрация	концентрация	новление
-	86.4	
43.2	44.1	102.8
21.6	22.1	102.3
10.8	10.4	96.2
	92.8	
46.4	45.5	98.0
23.2	24.0	103.4
11.6	10.8	93.1
	43.2 21.6 10.8 46.4 23.2	концентрация 86.4 43.2 21.6 22.1 10.8 46.4 45.5 23.2 40.4 40.

ОГРАНИЧЕНИЯ ПРОЦЕДУРЫ

В этом анализе эффект «крюка» или «петли» не был обнаружен в пределах до 4000 мМЕ/мл ЛГ.

ЛИТЕРАТУРА

(См. в оригинале инструкции).

ИНФОРМАЦИЯ ДЛЯ ЗАКАЗА:

ЧМП «ДИАМЕБ» Ул. Чорновола, 97, г. Ивано-Франковск, 76005 Тел.: (0342) 775122

Тел/факс: (0342) 775612 E-mail: <u>info@diameb.com</u> <u>www.diameb.com</u>