

Набор ИФА

для количественного определения Anti-H.Pylori специфических антител класса IgG, IgA или IgM типа в человеческой сыворотке или плазме

Kam. № : EIA-4101 Количество : 96

Производитель: DRG (США)

Внимание: основой при проведении анализа является оригинал инструкции на англ. языке.

Методика от **05-11-2009**

Принцип

Последовательный ELISA метод:

Для последовательного ELISA анализа необходимыми реагентами являються иммобилизированный антиген, циркулируемое аутоантитело и ферментосвязуемое видоспецифическое антитело. В этой процедуре иммобилизация происходит на поверхности лунок во время взаимодействия стрептавидина, которым покрыта лунка, и экзогенного внесенного биотинилированного H.Pylori антитела.

Во время смешивания биотинилированного антитела и сыворотки с антителом, происходит реакция между антигеном и антителом, в результате которой образуется имунный комплекс. Иллюстрировано это выглядит следующим образом:

 $\overset{\cdot }{h}\text{-}Ab_{(X\text{-H. Pylori})} + \overset{Btn}{}Ag_{(H. \ Pylori)} \leftrightarrow h\text{-}Ab_{(X\text{-H. Pylori})} - \overset{Btn}{}Ag_{(H. \ Pylori)}$

-а
^{Bth}Ag_(H.Pylori) = Биотинилированный Антиген (Постоянное Количество
(Переменно $h\text{-}Ab_{(X\text{-}H.Pylori)}$ Человеческое Аутоантитело (Переменное

Количество)
Аb $_{(X-H.\ Pylori)}^{Btn}$ Аg $_{(H.\ Pylori)}^{Btn}$ = Имунный Комплекс (Переменное Количество

k_a = Константа Ассоциации

k-a = Константа Диссоциации

Одновременно комплекс осаждается на лунке стрептавидином и биотинилированным антигеном. Это взаимодействие изображено следующим образом: h-Ab_(X-H. Pylori)-^{Btn}Ag _{(H.}

ⁿAg _(H. Pvlori) + Streptavidin_{C.W.} → иммобилизированый комплекс (ИК)

Streptavidin_{C.W. =} Стрептавидин, иммобилизированный на лунке Immobilized complex: сэндвич комплекс, связанный с твердой поверхностью.

После инкубационного периода лунка промывается для ее от несвязавшихся антигенов декантацией или отлепения Ферментосвязуемое видоспецифическое антитело аспирацией. (anti-h-lgG, M или A) последовательно добавляется к микролункам.

Это подводит связи к создавшемуся иммунному комплексу. $IC_{(h-igG,M\ или\ A)} + {}^{ENZ}Ab_{(X-h-igG,M\ или\ A)} - {}^{ENZ}Ab_{(X-h-igG,M\ или\ A)} - {}^{IC_{(h-igG,M\ или\ A)}} - {}^{IC_{(h-igG,M\ или\ A)}}$ иммобилизированный Имунный IC_(h-lgG,M или A) (Переменное Количество) $\stackrel{\text{ENZ}}{=}$ Аb_(x-h-lgG,M или A) = фермент-антитело Соединение (Стабильное

Количество)

^{ENZ}Ab_(X-h-lgG,M или A) \rightarrow ^{I.C.}Ab_{(h-lgG,M или A} = Ag-Ab Комплекс (Переменный) Anti-h-lgĞ, lgM или lgĂ ферментное соединение, связанное с имунным комплексом, во второй инкубации отделяется от невступившего в реакцию материала промывкой. Ферментная активность в этой фракции прямо пропорциональна к концентрации антитела в образце. Путем анализа нескольких образцов сывороток при известной активности антител, можно вывести кривую, из которой определяется неизвестная активность антител.

Реагенты

Материалы, поставляемые с набором:

Anti-H. Pylori Калибраторы – 1мл/флакон

Пять (5) флаконов с референс-растворами Anti-H. Pylori на уровне <u>0 (A)</u>; 10 (B); <u>25 (C)</u>; <u>50 (D)</u>; <u>100 (E)</u> мл IgG, IgM или IgA типа. Консервант добавлен. Хранить при 2 - 8°C.

B. Anti-H. Pylori Биотион конъюгат – 13 мл/флакон. биотинилированных Один (1) флакон, неактивированных Н. Pylori в буферном матриксе. Консервант добавлен. Хранить при 2 – 8°C.

EIA-4101, DRG Anti-H. Pylori IgM

- Ферменто-антигенный конъюгат, 13 мл/флакон. C. Один (1) флакон, человеческих антител IgG, IgM или IgA культуры хреновой пероксидазы соединение в буферном матриксе. Консервант добавлен. Хранить при 2 – 8°C.
- D. Микропланшет покрытый стрептави- дином - 96 лунок

Один 96-луночный микропланшет, покрытых стрептавидином и упакованных в алюминиевый пакетик с поглотителем влаги. Хранить при 2 – 8°C.

- Концентрат-растворитель сыворотки 20 мл. E. Один (1) флакон растворителя сыворотки с солевым буфером и красителем. Хранить при 2 - 8°C
- F. Концентрат для промывки - 20 мл. Один (1) флакон с поверхностно-активным веществом (ПАВ) в солевом буфере. Консервант добавлен. Хранить при 2 – 30°C.
- G. Субстрат А - 7 мл/флакон. Одна (1) бутылочка с тетраметилбензидином в буфере. Хранить при 2 -
- Субстрат В 7 мл/флакон. Одна (1) бутылочка с Н перекисем водорода (H_2O_2) в буфере. Хранить при 2 – 8°C.
- Стоп Раствор 8 мл/флакон. Одна (1) бутылочка с концентрированной кислотой (1N HCI). Хранить при 2 – 30°C
- Инструкция по применению продукта

Примечание 1: Не использовать реагенты по истечении срока годности.

Примечание 2: Открытые реагенты стабильны в течение 60 дней при температуре хранения 2 – 8°C.

Примечание 3: Реагенты предназначены для использования в микропланшете на 96 лунок.

Материалы, необходимые, но НЕ поставляемые в наборе

- Пипетки на 50 и 10 мл с точностью лучше 1,5%.
- Диспензеры на 0,100 и 0,300 мл с точностью лучше 1,5%. 2.
- 3. Вошер или гибкая бутылка (не обязателен).
- Считыватель на 450 и 620 нм. 4.
- 5. Промокательная для промокания бумага лунок микропланшета.
- Пластиковая обгортка или покрытие для микропланшета для шагов инкубации.
- 7. Вакуумный аспиратор (не обязателен) для шагов инкубации.
- 8. Таймер.
- 9. Материалы контроля качества.

Меры предосторожности

Для использования в диагностике ин-витро. Не для наружного или внутреннего использования людьми и животными.

Все компоненты набора, содержащие человеческий биоматериал, прошли испытания и признаны безопасными в отношении Гепатита В, С, поверхностного антигена ВИЧ 1 и 2. Тем не менее, к ним стоит относиться как к потенциально заразным и быть предельно осторожными при работе с этими реагентами.

Отбор и подготовка образцов

Образцы – это кровь, сыворотка или плазма крови; при их отборе через вену должны строго соблюдаться все правила данного метода. Для достижения более точных и четких результатов кровь необходимо отобрать натощак с утра. Дайте крови свернуться. Отцентрифугируйте её для получения сыворотки. Образцы могут быть заморожены при 2 – 8°C максимум на 5 дней. Если образцы не могут быть рассмотрены в течение данного периода времени, их следует заморозить до - 20°C на срок до 30 дней. Избегайте повторного замораживания и размораживания. Когда анализ сдвоенный, берется 0,100 мл образца (IgM и IgA) или 0,050 мл (IgG).

Подготовка реагентов

Разбавитель сыворотки

Развести 200 концентрат сыворотки ΜЛ дистиллированной или деонизированной водой соответствующем сосуде. Хранить при 2 - 8°C.

Промывочный раствор

Развести промывочный концентрат 1000 ΜЛ дистиллированной деонизированной или водой соответствующем сосуде. Хранить комнатной при температуре 20 - 27°C до 60 суток.

Рабочий Субстратный Раствор

Перелить содержимое флакона «А» во флакон «В». Перемешать и хранить при 2 – 8°C. Использовать в течение 60 суток. Если планируется использование на более длительный срок, то изначально рассчитывается

необходимое количество субстратов «А» и «В» и смешивается.

Примечание: Не использовать рабочий раствор, если он выглядит синим.

Процедура анализа

Перед началом анализа привести все реагенты, референтные сыворотки и контроли к комнатной температуре (20 - 27°C).

- 1. Расположить лунки миекропланшета для каждой референтной сыворотки, контроля или разбавленного образца пациента для исследования в двойном экземпляре. Поместить неиспользуемые стрипы обратно в алюминиевый пакет. Герметично закрыть и хранить запечатанным при 2 8°C.
- Раскапать по 0,025 мл соответственной референссыворотки, контроля и разбавленного образца пациента для определения IgG. Для определения IgM или IgA раскапать по 0,050 мл референс-сыворотки, контроля и образца в соответствующие лунки.
- 3. Добавить по 0,100 мл раствора биотинилированного конъюгата H.Pylori.
- Покрутить планшет аккуратно в течение 20 30 секунд для смешивания и накрыть.
- 5. Инкубировать 60 минут при комнатной температуре.
- Удалить содержимое микропланшета декантацией или аспирацией. При декантации протереть планшет насухо промокательной бумагой.
- 7. Добавить по 300 мл промывочного буфера (см. Подготовка Реагента) и снова подвергнуть декантации или аспирации. Повторить вышеупомянутую процедуру 2 раза (в сумме 3 промывки). Для этих целей может использоваться автоматический вошер. При использовании гибкой бутылки, заполните каждую лунку под давлением (не допуская возникновения пупырышек) для проведения промывки. Декантировать и повторить дополнительно два (2) раза.
- Добавить по 0,100 мл ферментного anti-h-igG, IgM или IgA раствора конъюгата во все лунки. Всегда добавлять реагенты в одинаковой последовательности для минимизирования времени реакции между лунками. Не встряхивать планшет после добавления фермента.
- 9. Накрыть и инкубировать 30 минут при комнатной температуре.
- 10. Повторить последовательность (см. п. 6 и 7) как указано выше.
- 11. Добавить по 0,100 мл раствора рабочего субстрата во все лунки. Всегда добавлять реагенты в одинаковой последовательности для минимизирования времени реакции между лунками. Не встряхивать планшет после добавления фермента.
- 12. Инкубировать при комнатной температуре в течение 15 минут.
- Добавить по 0,050 мл стоп-раствора в каждую лунку и аккуратно перемешать 15-20 секунд. Всегда добавлять реагенты в одинаковой последовательности для минимизирования времени реакции между лунками.
- считать поглощение в каждой лунке при 450 нм. Результаты должны быть получены в течение 30 минут с момента добавления стоп-раствора.

Примечание: При проведении анализа образцов с концентрацией больше чем 100 Е/мл, растворите образец в пропорции 1:5 или 1:10 используя первичный растворяемый материал в сыворотке. Умножьте соответственно к пропорции для получения концентрации образца.

Контроль качества

Каждая лаборатория должна использовать во время анализа контроли низкого, нормального и высокого уровня для отслеживания качества процедуры. Эти контроли должны использоваться как неизвестные и значения должны получаться свои для каждого анализа. Значения контролей качества должны быть получены вместе с реагентами набора. Для уверенности должны использоваться соответствующие статистические методы. Каждая лаборатория должна иметь свои специфические условия проведения анализа. Значительное отклонение от полученых данных говорит о незаметных изменениях в экспериментальных условиях или разложении компонентов набора. Свежие реагенты используются для определения необходимости для вариаций.

Расчет результатов

Для исследования концентрации Anti-H.Pylori в неизвестном образце строится кривая.

 Запишите поглощение, полученное в результате анализа на считывателье.

- 2. Нанесите точки на миллиметровой бумаге на графике поглощения дубликата референс-сыворотки в сравнении с активностью Anti-H.Pylori для каждого стандарта и для исследуемого образца (не выводить среднее число дубликата референс-сыворотки перед нанесением данных).
- 3. Нарисуйте наиболее подходящую кривую по этим точкам.
 - Для определения уровня неизвестной активности Anti-H.Pylori изобразите среднее значение неизвестного поглощения дубликата на вертикальной оси граф; найдите точку пересечения на кривой и прочтите концентрацию (в мл) с горизонтальной оси граф (среднее число неизвестных дубликатов можно выводить по изображенному). В последующем примере среднее поглощение составляет 1,603 (количество пересечений в кривой) при концентрации Anti-H.Pylori 64,0 мл.

Пример 1. (Типичные результаты для IgG. М или A)

Идентиф-я	Лунка №	езультаты для Поглощ. (A)	Средняя	Кол-во
образца			Поглощ. (В)	
Cal A	A1	0.042		
	B1	0.046	0.044	0
Cal B	C1	0.424		
	D1	0.388	0.406	10
Cal C	E1	0.810		
	F1	0.772	0.791	25
Cal D	G1	1.351		
	H1	1.273	1.312	50
Cal E	A2	2.377		
	B2	2.279	2.328	100
Пациент	C2	0.163		
	D2	0.182	0.172	5.2
Пациент	A3	1.534		
	B3	1.671	1.603	64.0

Параметры Контроля Качества

Максимальное поглощение (100 Е/мл калибратор)= > 1.3

Ограничения процедуры

А. Подготовка Анализа

- Очень важно чтобы время реакции в каждой лунке было одинаковым при выведении результатов. Пиппетирование образцов не должно превышать 10 минут. При использовании больше чем 1 планшета рекомендуется вывести повторно кривую дозы.
- 2. Добавление субстратного раствора ведет к кинетической реакции, которая останавливается добавлением предотвращающего раствора. Поэтому, добавление субстрата и предотвращающего раствора должно осуществляться в одинаковой последовательности для предотвращения отклонений во время реакции.
- Планшеточные считыватели проводят измерения вертикально. Не касайтесь дна лунок.
- Неправильное извлечение раствора во время промывочных шагов аспирации или декантации может привести к плохому отображению результатов и их неадекватности.
- 5. Очень высокая концентрация Anti-H.Pylori в образцах пациента может незамедлительно загрязнить другие образцы. Плохие дубликаты являются результатом непосредственного загрязнения. При любой повторной проверке любого человеческого образца, происходит поглощении в 3,0 единицы.
- 6. Образцы, подверженные микробиологическому загрязнению не должны использоваться.

Б. Интерпретация

При использовании компьютера для интерпретации данных анализа, необходимо учитывать, что ожидаемые показатели калибратора являются ниже 10% определенной концентрации.

Клиническое определение результата должно осуществляться совместно с определением наличия желудочно-кишечной болезни. Однако, клинические выводы должны не только основываться на данном анализе, но как дополнение к клиническим обследованиям пациента или к другим анализам из области гистологии, уреазы, деятельности бактерий. Положительный результат не указывает на наличие желудочно-кишечной болезни и не дифференцирует между колонизацией и инфекцией H.Pylori. Соответственно, отрицательный результат не демонстрирует отсутствие инфекции H.Pylori, скорее всего очень низкую плотность антитела, что можно отнести к ранним стадиям колонизации.

Ожидаемые диапазоны значений

Наличие IgG и IgA антител к H.Pylori считается подтвержденным когда уровень сыворотки превышает 40 F/мп

Наличие IgM антител к H.Pylori считается подтвержденным когда уровень сыворотки превышает 40 Е/мл.

Характеристики проведения анализа

А. Точность Anti-H. Pylori - IgG

Точность анализа и ряда анализов Anti-H. Pylori - IgG Микропланшеточной EIA Системы Анализа определена с помощью двух разноуровневых контрольных сывороток. Количество, среднее число, стандартное отклонение (σ) и коэффициет вириации для каждой из этих контрольных сывороток отображено в Табл. 2 и 3.

Табл 2

Точность внутренного анализа (измер. в мл)

Образец	N	Χ	σ	КВ
Отрицательный	20	5,5	0,31	5,6%
Положительный	20	43,2	1,85	4,3%

Табл. 3*

Точность межтестового анализа (измер. в мл)

Образец	N	Χ	σ	КВ
Отрицательный	10	5,8	0,40	6,9%
Положительный	10	42,1	2,10	5,0%

^{*} Определено 10 экспериментами при дупликации.

В. Точность Anti-H. Pylori – IgM

Точность анализа и ряда анализов *Anti-H. Pylori - IgM* Микропланшеточной EIA Системы Анализа определена с помощью двух разноуровневых контрольных сывороток. Количество, среднее число, стандартное отклонение (σ) и коэффициет вириации для каждой из этих контрольных сывороток отображено в Табл. 2 и 3.

Табл. 4

Точность Внутренного Анализа (измер. в мл)

Образец	К-во	Χ	σ	КВ
Отрицательный	20	3,1	0,23	7,4%
Положительный	20	39,8	1,65	4,1%

Табл. 5*

Точность Межтестового Анализа (измер. в мл)

TO ITIOOTE MERTEOTOBOTO ATTASTISSA (VISINOP: B IN					
Образец	К-во	X	σ	КВ	
Отрицательный	10	3,8	0,34	8,9%	
Положительный	10	37.1	2.80	7.5%	

^{*} Определено 10 экспериментами при дупликации.

С. Точность Anti-H. Pylori – IgA

Точность анализа и ряда анализов *Anti-H. Pylori - IgA* Микропланшеточной EIA Системы Анализа определена с помощью двух разноуровневых контрольных сывороток. Количество, среднее число, стандартное отклонение (σ) и коэффициет вириации для каждой из этих контрольных сывороток отображено в Табл. 2 и 3.

Табл. 6

Точность Внутренного Анализа (измер. в мл)

			(
Образец	К-во	Х	σ	КВ
Отрицательный	20	2,8	0,22	8,5%
Положительный	20	25,5	1,35	5,3%

Табл. 7*

Точность Межтестового Анализа (измер. в мл)

Образец	К-во	Χ	σ	KB
Отрицательный	10	2,5	0,20	8,0%
Положительный	10	25,1	1,90	7,6%

^{*} Определено 10 экспериментами при дупликации.

ЛИТЕРАТУРА

(См. в оригинале инструкции).

ИНФОРМАЦИЯ ДЛЯ ЗАКАЗА:

ЧМП «ДИАМЕБ» Ул. Чорновола, 97, г. Ивано-Франковск, 76005 Тел.: (0342) 775122 Тел/факс: (0342) 775612 E-mail: info@diameb.ua www.diameb.ua